
Keycloak at the INT

A not always straightforward 
journey in auth

Koen Mertens



Introduction

o Koen Mertens
o Worked at the INT since 2017
o Started exploring Keycloak end of last year
o Never did Auth before, straight into the deep end

2



In the past

o Authentication / Identity Management came up from time to time, 
never as a central focus

o Usually solved per-application in an ad-hoc manner
o Could always fall back on Shibboleth / CLARIN login
o Proper solution becoming more important as we build more software

3



Difficulties

o Limiting access to certain users
o User registration
o Roles

4

Current solution

Ad-hoc implementations o Maintenance
o Setup work again and again
o Bus factor



Requirements

Centralized Modern standards (OpenID 
Connect)

Integrate with CLARIN 
federation for existing users

5



6



Overview

o Easy to set up (<10 minutes with Docker)
o Frequent releases
o Supports SSO (single-sign-on)
o Supports both OIDC and SAML, good open-source support
o Supports brokering (integrating with social networks, etc)
• Foreshadowing: Integrating with CLARIN not as straightforward...

o Supports fine grained authorization (user resource sharing)
• Not as straightforward (again)

o Supports custom themes and extensions

7



Initial impressions

8

Nice admin panel! Terminology?
o Realms
o SAML
o OIDC
o Client
o Resource Server
o Identity Provider
o Relying Party
o Scope
o Role
o Group
o Attribute
o Mapper
o Permission
o Service Account
o Providers
o UMA
o Oh my!



Quick OIDC primer - tokens

9

o We only care about Tokens
• Identity Tokens: contain information about the user. Username, email, roles, etc.

§ Don't send this over the web!
• Access Tokens: for sending to API's, related applications. Can be exchanged 

with the Identity Provider (Keycloak) to retrieve associated user info and 
permissions.

o User logs in directly with Identity Provider (Keycloak)
o After login, IDP sends Tokens to applications, representing the User
o Other flows also possible, for example for devices lacking web 

browser or keyboard.



Quick OIDC primer – standard flow

10

https://keycloak.local/authorize?...
&clientId=Client
&redirect_uri=the.client/callback



Quick OIDC primer – standard flow

11

https://client.local/callback&...
?state=...
?token=...

https://client.local/callback


Quick OIDC primer – standard flow

12

POST https://keycloak.local/token

code: 205f8878-f509-4a45-83c6-
c38ac98d6ded.3e66bc99-77d1-4f7e-8183-
5fd922c6734a.763e740a-25a0-4ec0-800d-
0b6d0d3dd661
grant_type: authorization_code

access_token: ...
expires_in: 60
id_token: ...
not-before-policy: 0
refresh_expires_in: 3592
refresh_token: ...
scope: "openid email profile"
session_state: "3e66bc99-77d1-4f7e-8183-
5fd922c6734a"
token_type: "Bearer"

https://client.local/callback


Story: existing applications
o BlackLab + Corpus Frontend, used for 

publishing our corpora
• Java servlet creates page scaffold, Vue 

Javascript frontend
• Examples: OpenSonar, historical 

corpora, AutoSearch

13

o Problem: Keycloak client libraries (adapters) deprecated
• Need to use opensource alternatives

§ OIDC-client-ts for Javascript frontend
§ Pac4j/Nimbus Jose for Java backend

• Upside: more generic than just Keycloak



Create a Client
o Client here 

refers to an 
Application, not 
an End User

14



Create a Client
o Client 

Authentication will 
require our 
application to send a 
secret when 
retrieving ID and 
Access Tokens.

o Only makes sense 
for server-side 
applications, as the 
browser cannot keep 
a secret.

15



Create a Client
o Whitelist the redirect 

URLs to our 
application, so the 
redirect containing 
the Tokens cannot 
point outside our 
application.

16



Frontend

o Example OIDC-client-ts code

o Doesn’t need to do much.
• Redirect to Keycloak on login
• When returning, read code, 

exchange for Access Token, ID 
Token.

o Simply add Access Token to 
Authorization header of requests 
to your API.

o Important enforcement logic 
lives in the backends.

17



Backend first attempt: Pac4J
o BlackLab uses raw Servlet, no framework
o Pac4J is more suited to frameworks, Quarkus, Spring, etc.
o Default setup doesn’t work for Access Tokens. Wants to retrieve the Tokens in 

the backend
• Safer, but more work. You now need to extend your API just to show the username on the 

Frontend.
o Pac4J needs lots of massaging to work with Access Tokens

• Override built-in Validator with no-op implementation (default expects ID tokens)
• Write custom Authenticator (convert token to User object)
• Change incompatible defaults
• Documentation not great on why and how to do these steps
• Misleading errors in some cases when you make a mistake – compiles doesn't mean it works.
• Don't get to use many of the features to decorate API functions etc. because there are 

none.
o Probably don't bother unless using a framework like Spring

18



Backend second 
attempt:
Nimbus JWT

19

o Light on code
o Need to manually contact 

Keycloak for some 
initial metadata

o Downside: need to 
manually check usernames 
and roles in API code.



Summary for existing applications
o Easy enough for a backend-only application
o Easy enough for a frontend that gets everything from an API
o Extra effort for hybrid applications, where backend serves initial content, 

but frontend performs additional AJAX requests
• User info typically only exists on Frontend or Backend, but not both
• Need to know who is logged in on both sides however

o Some considerations for non-standard setups
• One frontend, multiple (secured) back-ends (microservices)
• Backend-to-backend communication

20



Coupling with CLARIN federation

21

o We initially expected this to be simple.
o But: Keycloak's SAML broker does not support SAML Discovery Protocol.

• There is a fork of Keycloak that supports SAML Discovery, but no official support
Seems unwise to depend on for longterm production use.

o Can add every federation one by one with the admin API, but results in 
1500+ brokers!
• The French CLARIN Centre Ortolang does this, 

we could use their code
§ Doesn’t feel quite right
§ Needs a custom Keycloak theme
§ User experience isn’t as good as Shibboleth.

o Need something better...



Coupling with CLARIN federation
o We can write a custom Broker for Keycloak
o Same mechanism as Google, Facebook, Github etc. Account linking.
• Normally a Broker acts like a Client, receives Tokens (from Google, etc.)
• Reads the username from the Token and logs in the correct Keycloak account.

o We can make our existing CLARIN login portal (Shibboleth) forward 
requests to our custom Broker
• Shibboleth will intercept the request,

make the user log in with CLARIN,
then pass the CLARIN username to our Broker

o Our broker can then read this info and create/login the associated 
Keycloak account!

22



Shibboleth/Keycloak flow

23



Groups, Roles, Scopes, oh my!
o 15 minutes too short to go in depth
o For someone new to Auth, a frustrating and at times confusing topic
o Lots of terminology, very freeform, rules on proper usage seem to be nebulous

• Keycloak doesn’t help by adding extra abstraction layers
• Groups are an abstraction to apply Roles to users automatically
• Roles are an abstraction to add attributes to the User’s Tokens
• Scopes are an abstraction to add attributes to the User’s Tokens
• Eventually everything boils down to extra attributes in Tokens
• Great for re-use, but makes for a steeper learning curve, and overkill for our modest purposes

o Careful suggestion: keep it simple.
• Ignore Groups and Scopes initially
• Use Roles only if there is need to differentiate Users by something besides username.

o Important: roles/scopes not suitable for individual permissions per Resource 
(e.g., uploaded corpora)
• You can only be an Admin for the entire application, not for only your own data
• Keycloak has a separate system (UMA – User Managed Access) for this

24



UMA: User Managed Access
o Can register users' Resources and Permissions on those Resources in Keycloak

o Example: Alice allows Bob to read, but not edit a Dictionary she uploaded
o Bob can lodge a request for permissions with Alice

• Keycloak won't send Alice an email... Limits real-world usability

o Java library (keycloak-authz-client)
• Bare-bones, basically a set of classes to interface with Keycloak's API

o Need to build your own UI
• Keycloak has a bare-bones panel, but it only shows Resources you own

o Important: UMA Resources and Permissions are tied to a single Client
o A Permission is a combination of: The Client, The User, The Resource, The "verbs" (can be 

anything)
o Example, the Dictionary Editor from above can only query Dictionaries, not Corpora, 
o Other Clients cannot see Dictionaries, and cannot query Alice's rights

o Microservices will need to share the same Client ID
o Seems more work than using your own database 

25



Questions?

26


