

Outline

Introduction

The Idea: Containerising CLARIN DSpace

The Implementation: How did we approach the problem?

The Problems: Challenges and Common Pitfalls

The Future: Open Points and Possible Next Steps

• This presentation will give some insight into our experience with

- This presentation will give some insight into our experience with
 - CLARIN DSpace

- This presentation will give some insight into our experience with
 - CLARIN DSpace
 - Docker

- This presentation will give some insight into our experience with
 - CLARIN DSpace
 - Docker
 - Kubernetes

- This presentation will give some insight into our experience with
 - CLARIN DSpace
 - Docker
 - Kubernetes
- and how to make something new with all of them

- This presentation will give some insight into our experience with
 - CLARIN DSpace
 - Docker
 - Kubernetes
- and how to make something new with all of them
- I'll briefly describe how we did it, where we encountered problems and how we solved them

CLARIN DSpace in brief

• A fork of DSpace with some modifications and add-ons for CLARIN

CLARIN DSpace in brief

- A fork of DSpace with some modifications and add-ons for CLARIN
- Developed at UFAL in Prague, but now a community project

CLARIN DSpace in brief

- A fork of DSpace with some modifications and add-ons for CLARIN
- Developed at UFAL in Prague, but now a community project
- Easy and quick to set up (if you're happy with the default behavior)

Under heavy development (sometimes still breaks backwards compatibility)

- Under heavy development (sometimes still breaks backwards compatibility)
- Available for all major OSes (with a focus on Unix-based ones)

- Under heavy development (sometimes still breaks backwards compatibility)
- Available for all major OSes (with a focus on Unix-based ones)
- The most popular containerization software

- Under heavy development (sometimes still breaks backwards compatibility)
- Available for all major OSes (with a focus on Unix-based ones)
- The most popular containerization software
 - Bundle all necessary software and libraries

- Under heavy development (sometimes still breaks backwards compatibility)
- Available for all major OSes (with a focus on Unix-based ones)
- The most popular containerization software
 - Bundle all necessary software and libraries
 - Without all the bloat that is not needed (but installed by default in a VM)

- Under heavy development (sometimes still breaks backwards compatibility)
- Available for all major OSes (with a focus on Unix-based ones)
- The most popular containerization software
 - Bundle all necessary software and libraries
 - Without all the bloat that is not needed (but installed by default in a VM)
 - Closer coupling to the host resources (less overhead)

• Orchestration tool for (Docker) containers

- Orchestration tool for (Docker) containers
- Helps with

- Orchestration tool for (Docker) containers
- Helps with
 - Managing volumes (e.g. through connecting a ceph filesystem)

- Orchestration tool for (Docker) containers
- Helps with
 - Managing volumes (e.g. through connecting a ceph filesystem)
 - Scaling by spinning up more containers and

- Orchestration tool for (Docker) containers
- Helps with
 - Managing volumes (e.g. through connecting a ceph filesystem)
 - Scaling by spinning up more containers and
 - replacing dead containers by restarting them

- Orchestration tool for (Docker) containers
- Helps with
 - Managing volumes (e.g. through connecting a ceph filesystem)
 - Scaling by spinning up more containers and
 - replacing dead containers by restarting them
 - Managing (HTTP and HTTPS) access from outside through a central nginx proxy (Ingress)

Outline

The Idea: Containerising CLARIN DSpace

The Implementation: How did we approach the problem?

The Problems: Challenges and Common Pitfalls

The Future: Open Points and Possible Next Steps

The situation

 IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre

- IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre
- CLARIN DSpace quickly turned out to be the obvious choice

- IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre
- CLARIN DSpace quickly turned out to be the obvious choice
- We decided to dockerize it for multiple reasons

- IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre
- CLARIN DSpace quickly turned out to be the obvious choice
- We decided to dockerize it for multiple reasons
 - it seems like a cleaner, more easily reproducible set-up than doing it inside a VM

- IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre
- CLARIN DSpace quickly turned out to be the obvious choice
- We decided to dockerize it for multiple reasons
 - it seems like a cleaner, more easily reproducible set-up than doing it inside a VM
 - Our IT had recently set up a Kubernetes cluster

- IAL at Eurac Research wanted to set up a repository to become a CLARIN Centre
- CLARIN DSpace quickly turned out to be the obvious choice
- We decided to dockerize it for multiple reasons
 - it seems like a cleaner, more easily reproducible set-up than doing it inside a VM
 - Our IT had recently set up a Kubernetes cluster
 - CLARIN-IT is still in the beginning and doesn't have much money, so we thought creating a (more or less) one-click installation for a CLARIN-compatible repo might be interesting to other institutes in Italy

Outline

The Idea: Containerising CLARIN DSpace

The Implementation: How did we approach the problem?

The Problems: Challenges and Common Pitfalls

The Future: Open Points and Possible Next Steps

• As a first step (as Docker newbies) we followed the DSpace installation instructions and set it all up within one container

- As a first step (as Docker newbies) we followed the DSpace installation instructions and set it all up within one container
- Typical docker pitfalls
 - some system services like systemd are not available
 - some helper programs (less,vim,ping) are not available (for debugging)
 - communications to the outside can be tricky (especially non HTPP(S))

- As a first step (as Docker newbies) we followed the DSpace installation instructions and set it all up within one container
- Typical docker pitfalls
 - some system services like systemd are not available
 - some helper programs (less,vim,ping) are not available (for debugging)
 - communications to the outside can be tricky (especially non HTPP(S))
- The installation process needed some manual steps (e.g. generating the admin user) which we needed to automatize

- As a first step (as Docker newbies) we followed the DSpace installation instructions and set it all up within one container
- Typical docker pitfalls
 - some system services like systemd are not available
 - some helper programs (less,vim,ping) are not available (for debugging)
 - communications to the outside can be tricky (especially non HTPP(S))
- The installation process needed some manual steps (e.g. generating the admin user) which we needed to automatize
- End result: "Dockerized CLARIN DSpace"

The Implementation: Docker Compose

Separating Services using Docker Compose

 We now have three containers nginx including shibboleth, psql and a big one with all the rest

The Implementation: Docker Compose

- We now have three containers nginx including shibboleth, psql and a big one with all the rest
- Separation problems

The Implementation: Docker Compose

- We now have three containers nginx including shibboleth, psql and a big one with all the rest
- Separation problems
 - Most services talk to each other over the network, but some need local files or sockets

The Implementation: Docker Compose

- We now have three containers nginx including shibboleth, psql and a big one with all the rest
- Separation problems
 - Most services talk to each other over the network, but some need local files or sockets
 - Figuring out which libraries are necessary for which program is not always easy

- We now have three containers nginx including shibboleth, psql and a big one with all the rest
- Separation problems
 - Most services talk to each other over the network, but some need local files or sockets
 - Figuring out which libraries are necessary for which program is not always easy
- It became obvious that some internal program manager (e.g. supervisor) is often necessary

Konverting Docker Compose to Kubernetes

• Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)
- All secret information (e.g. usernames and passwords) is moved to Kubernetes secrets

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)
- All secret information (e.g. usernames and passwords) is moved to Kubernetes secrets
- Every outside access to containers is managed by a central Ingress proxy where also the SSL certificates are stored

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)
- All secret information (e.g. usernames and passwords) is moved to Kubernetes secrets
- Every outside access to containers is managed by a central Ingress proxy where also the SSL certificates are stored
 - makes it hard to distinguish different services via IP (setting up two handle servers)

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)
- All secret information (e.g. usernames and passwords) is moved to Kubernetes secrets
- Every outside access to containers is managed by a central Ingress proxy where also the SSL certificates are stored
 - makes it hard to distinguish different services via IP (setting up two handle servers)
 - non-standard ports (e.g. handle net) are difficult to set up

- Handy tool Kompose (https://kompose.io/) creates basic Kubernetes yaml files from docker-compose.yml
- Volumes need to be added using Kubernetes volume management (we use a ceph filesystem that is connected to the Kube cluster)
- All secret information (e.g. usernames and passwords) is moved to Kubernetes secrets
- Every outside access to containers is managed by a central Ingress proxy where also the SSL certificates are stored
 - makes it hard to distinguish different services via IP (setting up two handle servers)
 - non-standard ports (e.g. handle net) are difficult to set up
- Kubernetes fetches Docker images from registry (but as there are multiple nodes, sometimes the same image needs to be reloaded upon restart, which is mostly a problem with large images)

Used CLARIN WAYF instead of built-in UFAL one

- Used CLARIN WAYF instead of built-in UFAL one
- Adapted documentation and privacy policy (GDPR)

- Used CLARIN WAYF instead of built-in UFAL one
- Adapted documentation and privacy policy (GDPR)
- Adapted color style to Eurac (proved problematic because some functionality seems to be hardcoded in the UFAL theme)

- Used CLARIN WAYF instead of built-in UFAL one
- Adapted documentation and privacy policy (GDPR)
- Adapted color style to Eurac (proved problematic because some functionality seems to be hardcoded in the UFAL theme)
- Added a static start page that introduces the ERCC

Outline

The Idea: Containerising CLARIN DSpace

The Implementation: How did we approach the problem?

4 The Problems: Challenges and Common Pitfalls

The Future: Open Points and Possible Next Steps

Software used in the Dockerfile has to be strictly versioned

• Our DSpace Dockerfile uses a lot of sometimes very specific software

Software used in the Dockerfile has to be strictly versioned

- Our DSpace Dockerfile uses a lot of sometimes very specific software
- Some like Shibboleth are built from various sources that are fetched with a script

Software used in the Dockerfile has to be strictly versioned

- Our DSpace Dockerfile uses a lot of sometimes very specific software
- Some like Shibboleth are built from various sources that are fetched with a script
- For some libraries the URL where the source can be downloaded cannot be guessed from the version number alone (manual investigation necessary)

Software used in the Dockerfile has to be strictly versioned

- Our DSpace Dockerfile uses a lot of sometimes very specific software
- Some like Shibboleth are built from various sources that are fetched with a script
- For some libraries the URL where the source can be downloaded cannot be guessed from the version number alone (manual investigation necessary)
- Sometimes working URLs stop resolving because old library versions are archived in some way (=> build script suddenly stops working)

The Problems: General Kubernetes Problems

Kubernetes Problems and Peculiarities

 Proxying every access through Ingress needed some config tweaking to not lose origin IP (for statistics)

The Problems: General Kubernetes Problems

Kubernetes Problems and Peculiarities

- Proxying every access through Ingress needed some config tweaking to not lose origin IP (for statistics)
- Kubernetes often assumes that every user is admin which means that some info is not available to a non-privileged user (e.g. Ingress logs => makes debugging harder)

Kubernetes Problems and Peculiarities

- Proxying every access through Ingress needed some config tweaking to not lose origin IP (for statistics)
- Kubernetes often assumes that every user is admin which means that some info is not available to a non-privileged user (e.g. Ingress logs => makes debugging harder)
- Kubernetes is heavily developed, which means that sometimes urgent updates are needed, which may result in some services becoming unavailable

Open Issues and Common Problems

• Implementing CLARIN WAYF resulted in local login to be unavailable

Open Issues and Common Problems

- Implementing CLARIN WAYF resulted in local login to be unavailable
- Rebasing lindat-common (and to a lesser degree) clarin-dspace repo often results in conflicts because we had to change some general things

Open Issues and Common Problems

- Implementing CLARIN WAYF resulted in local login to be unavailable
- Rebasing lindat-common (and to a lesser degree) clarin-dspace repo often results in conflicts because we had to change some general things
- Eurac theming is spread across three projects (forks of clarin-dspace & lindat-common and the general docker project)

Outline

Introduction

The Idea: Containerising CLARIN DSpace

The Implementation: How did we approach the problem?

The Problems: Challenges and Common Pitfalls

The Future: Open Points and Possible Next Steps

Open Issues

• Figure out a way to have both Shibboleth and local login available

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container
- Improve documentation

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container
- Improve documentation
- (If possible) enable docker-compose again (in a separate branch?) for users without Kubernetes

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container
- Improve documentation
- (If possible) enable docker-compose again (in a separate branch?) for users without Kubernetes
- Shibbolize our search interfaces (e.g. Annis) and integrate them with DSpace

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container
- Improve documentation
- (If possible) enable docker-compose again (in a separate branch?) for users without Kubernetes
- Shibbolize our search interfaces (e.g. Annis) and integrate them with DSpace
- Investigate the use of a templating engine (e.g. Helm) to make updates more robust (e.g. version number only needs to be changed once)

- Figure out a way to have both Shibboleth and local login available
- Investigate whether/how the handle server can be moved to its own container
- Improve documentation
- (If possible) enable docker-compose again (in a separate branch?) for users without Kubernetes
- Shibbolize our search interfaces (e.g. Annis) and integrate them with DSpace
- Investigate the use of a templating engine (e.g. Helm) to make updates more robust (e.g. version number only needs to be changed once)
- Various optimizations (e.g. reduce the container size, main container is currently > 3GB)

Thank you for your attention!

https://gitlab.inf.unibz.it/commul/docker/clarin-dspace/

Alexander.Koenig@eurac.edu

