

Polish Read Speech Corpus for Speech Tools and Services

Danijel Koržinek, Krzysztof Marasek, Łukasz Brocki

Polish-Japanese Academy of Information Technology, Warsaw, Poland

October 28, 2016, Aix-en-Provence, France

About Clarin-PL

- ▶ B-type Clarin centre operating in Poland since 2013
- ▶ Run by teams from 6 Polish universities:
 - Wrocław University of Science and Technology
 - Institute of Computer Science PAS
 - PJAIT
 - Institute of Slavic Studies PAS
 - University of Łódź
 - Wrocław University
- ▶ It deals with various topics, including:
 - computer linguistics, social linguistics, language translation, language history and speech
- ▶ http://clarin-pl.eu

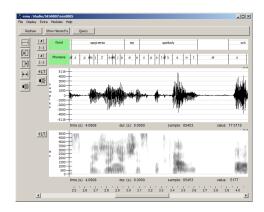
Speech resources at Clarin-PL

- ► Motivation:
 - ▶ lots of data used by HSS community exists in the form of audio
 - processing and analyzing this data is difficult and can be expensive
- ► This segment of the project is fully developed by PJAIT

- Consists of 2 main areas:
 - speech data
 - speech tools
- ▶ http://mowa.clarin-pl.eu

Speech data

- ► Speech corpora are expensive and hard to obtain, e.g.:
 - ► commercial: "CSLU", "Speecon", "GlobalPhone" and "Babel"
 - domain-limited: "Pelcra corpus of spontaneous speech" and "Spelling and NUmbers Voice database"
 - restricted due to copyright or other rules and limitation
- ▶ Our goal was to create a free general-purpose speech corpus



Polish general-purpose speech corpus

- ▶ We recorded and annotated \sim 56h of studio quality read speech and \sim 13h of telephone quality read speech
- ► The main purpose of these corpora is the development of speech processing tools
- ▶ It is available in two forms:
 - ► EMU database (currently old format)
 - Kaldi ASR baseline system
- It is available on a liberal license (CLARIN PUB+BY+INF+NORED)
- ▶ http://mowa.clarin-pl.eu/korpusy/

Emu database (old)

Emu database web service

► In development!

(source: http://ips-lmu.github.io/EMU.html)

Kaldi baseline results

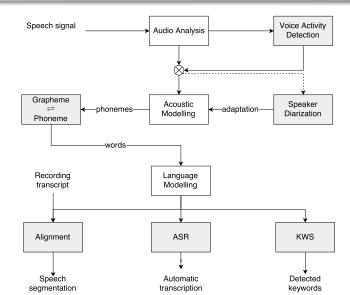
WER %	experiment
30.06	mono
17.56	tri 1
16.75	tri2a
15.75	tri2b
13.50	tri3b
13.10	tri3b-sp
12.88	tri3b-20k
12.41	tri3b-mmi
11.64	+wide beam
7.37	+large LM rescoring
3.23	oracle of wide beam
9.25	TDNN
5.91	+large LM rescoring
2.83	oracle
8.91	LSTM
5.78	+large LM rescoring
2.61	oracle

Kaldi baseline usage

everything available on Github:

https://github.com/danijel3/ClarinStudioKaldi

- usage:
 - 1. download and install Kaldi
 - 2. git clone ... above repository
 - 3. modify path.sh and cmd.sh (if neccessary)
 - 4. ./run.sh



Other speech data

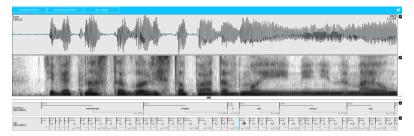
- ► The recorded corpus, while useful for tool development, lacks certain features for the actual study of language
- ▶ We are currently working on other in-domain corpora:
 - ▶ PELCRA spontaneous speech corpus (with UŁ)
 - ▶ Polish Parliament (with UŁ and IPI PAN)
 - Kroniki historical videos with news and current events (with University of Wrocław)

Speech tools diagram

Speech tools

- ▶ Other similar Clarin initiatives in other countries:
 - WebMAUS by LMU (speech segmentation)
 - AVATech by Max Planck Institute and Fraunhofer Institute (video/audio processing, speech segmentation, VAD and speaker diarization)
 - ► TTNWW (speech transcription services for Dutch)
- ▶ We developed speech tools available as web services:
 - Grapheme-to-phoneme conversion
 - Speech alignment
 - Speaker diarization
 - Voice activity detection
 - Keyword spotting
 - Speech transcription
- ▶ http://mowa.clarin-pl.eu/mowa

Grapheme-to-phoneme conversion


- ► Converting text from its orthographic into phonetic form
- Uses SAMPA phonetic alphabet
- Rule-based system
- Allows multiple word pronunciations
- ▶ http://mowa.clarin-pl.eu/transcriber

f S tS e b Z e S I ni e x S on S tS b Z m i f t S tsi i ni e i S tS e b Z e S I n s t e g o s w I ni e v u w g o p I t a p a ni e x S on S tS u p o ts u S p a n t a g b Z en tS I v g on S tS u

Text-to-speech alignment

- ► Given a transcription and an audio recording, we can calculate accurate alignment on word and phoneme level
- ▶ Also works on long audio (up to \sim 30 minutes)

Voice activity detection

- ▶ "Naive" methods are easily deceived
 - thresholding, energy, 0-cross, running average,...
- Uses a trained acoustic model to reject non-speech events
 - knocks, noise, music, ...
- Difficulties with para-linguistic noise
- Uses a frame-based RNN model
- ► Has very high recall (>99%), but precision is still an issue (lots of noise can be misclassified as speech)
- Classification of non-speech was also attempted

Speaker diarization

- Multiple levels of speaker recognition:
 - speaker change detection
 - ▶ speaker diarization (← this was done)
 - speaker identification
- Currently based on LIUM speaker diarization system
- ▶ Results are provided in the form of speech segmentation

Keyword detection

- ▶ Often we don't need a full transcript
- ► We can provide a list of keywords with the audio file and the system will generate a list of likely occurrences and their location
- ▶ It uses an ASR system with a general LM
- OOV words are modelled using syllables

Speech transcription

- Probably one of most sought after services
- Speech recognition works best when limited to a specific domain
- We provide a demonstration system for now, but would like to expand to specific domains useful in HSS research
- ▶ Based on the Kaldi toolkit for speech recognition

Selected applications

- ► Speech alignment/segmentation was used to annotate the Pelcra corpus of spontaneous speech
- Alignment was also used in the study titled "Respeaking the process, competences and quality"
- ► Attempts were made to transcribe social science interviews

Future plans

- Additional corpora will be annotated and delivered on their respective platforms
- Usability improvements through integration with the EMU web platform
- Development of a transcription service aimed at HSS research
- Facilitation of cooperation with more partners in the HSS community

Contact

- Danijel Koržinek danijel@pja.edu.pl
- Krzysztof Marasek kmarasek@pja.edu.pl
- Łukasz Brocki lucas@pja.edu.pl